

The potential benefits and harms of cancer screening: perspectives from the US Preventive Services Task Force

Mark H. Ebell MD, MS Professor, University of Georgia, Athens, Georgia, USA 2019 Fulbright Scholar at the HRB Primary Care Research Centre, RCSI, Dublin 2, Ireland

BIOSKETCH

- Family physician (GP) and Professor, University of Georgia ("UGA"), Athens, GA, USA
- Member US Preventive Services Task Force, 2012-2015
- Fulbright Scholar at HRB Centre for Primary Care Research, RCSI, 2019
- Editor-in-Chief, Essential Evidence Plus
- Research interests: clinical decision-making and decision support, meta-analysis, clinical prediction rules, cancer screening

UGA X and Hairy Dawg

TODAY'S GOALS

- Comparing cancer screening in Ireland and the US
- A brief overview of how USPSTF recommendations are created
- Potential benefits and harms of cancer screening
- The importance of "overdiagnosis" and how to mitigate it

Lake Michigan, 2018

"All screening programs do harm... some do good as well."

- Sir Muir Gray

CANCER SCREENING: INTERNATIONAL COMPARISONS

THE US AND IRISH HEALTH SYSTEMS COMPARED

SCREENING PROGRAMMES IN IRELAND AND US

Screening Program	Ireland	US
Breast cancer	50 - 69: mammography q 2 yrs	40 - 49: shared decision making 50 - 75: mammography q 2 yrs
Cervical cancer	25 - 44: cytology q 3 yrs 45 to 60: cytology q 5 yrs Reflex HPV testing if abnormal	21 - 29: cytology q 3 yrs 30 - 65: cytology + HPV or HPV alone q 5 yrs
Bowel cancer	60 - 69: stool based FIT q 2 yrs	50 - 75: any of 7 strategies, most opt for colonoscopy q 10 yrs
Prostate cancer	No national program	55 - 69: shared decision making
Lung cancer	No national program	50 - 80: annual low dose CT if 30+ pack years smoking
		RCSI

COMPARISON WITH OTHER DEVELOPED ECONOMIES: BREAST

*												
Country		ization (Type)	Year	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75+	4
United States	US Preventive Service	es Task Force (A)	2016									
United States	American Cancer So	ciety (B)	2015								*	
United States ¹	American College of	Obstetrics & Gynecology (C)	2017								*	
United States	American College of	Radiology (C)	2016									
Luxembourg	Ministry of Health (A)		NA	Francis Management		tan kasaran kara			an a		2.1	
Switzerland ²	League Against Cano	cer (B)	2016									
Norway	Cancer Registry of N	orway (B)	2010									
Netherlands ³	NIPHE (A)		2017									
Germany	Federal Joint Commi	ttee (A)	2015									
Sweden ⁴	National Board of He	alth and Welfare (A)	2013									
Ireland	National Screening S	ervice (A)	NA					į				Ireland
Austria	Austrian Cancer Aid	Society (B)	2014									
Denmark	National Board of He	alth (A)	2014									
Belgium	Foundation Against C	Cancer (B)	2017					i				
Canada ⁵	CTFPHC (A)		2011									
Australia	Australian Governme	ent Department of Health (A)	2015						1			
France ⁶	National Cancer Insti	tute (A)	2015									
Japan ⁷	National Cancer Cen	ter (A)	2016									
Iceland	Icelandic Cancer Soc	tiety (B)	NA					1	1			
UK	UK National Screenir	ng Committee (A)	2012									
Finland	Cancer Society of Fir	nland (B)	2010		-							
New Zealand	ealand Ministry of Health (B)		2014					1				
Italy	National Screening Observatory (A)		2015						1			
Spain	Cancer Strategy of National Health System (A)		2009						í			Source: Ebell, et al. <u>Public</u>
1										50 310	-	Health Rev. 2018 Mar
Recommend:	Reco	mmend selectively:	D	o not reco	ommend			Insufficie	nt eviden	ce:		2;39:7. doi: 10.1186/
Every 3 years		Every 2 years:		Ever	v 1 vear						10	s40985-018-0080-0.

Recommend:	Recommend selectively:	Do not recommend	 Insufficient evidence:	
Every 3 years:	Every 2 years:	Every 1 year:		

KEY DIFFERENCES BETWEEN US AND IRELAND

Торіс	United States	Ireland
General	Opportunistic, often not adherent to guidelines, overscreening common	Centrally organized, good adherence, little overscreening
General	11% of women 18-65 have no insurance	Free
General	More aggressive in terms of start and stop ages, interval	Later start and/or earlier stop
Colorectal	Colonoscopy every 10 years is dominant	Fecal immunochemical test
Lung cancer	Recommend low dose CT annually for persons 55-80 with 30+ pack years	Do not recommend
Prostate cancer	Shared decision-making for prostate CA screening age 55 - 69	Do not recommend

USPSTF AND ITS METHODS

Me **Doug Owens, current chair**

Bill Phillips (Univ Wash)

THE US PREVENTIVE SERVICES TASK FORCE

- Established 1984 by US government and supported by HHS
- 16 primary care physicians (mostly) with expertise in screening, prevention, evidence based practice, guideline development
- Members have no financial conflict of interest
- Make recommendations regarding screening and primary prevention
- 70+ topics reviewed every 5-7 years

Sample Topics:

- Cancer screening
- Aspirin and statin use
- Lifestyle recommendations for prevention
- Behavioral health screening and counseling
- Cardiovascular screening
 and prevention
- Obstetrical care
- Infectious disease screening and prevention

3

Harms

Step 3: Subgroup of Task Force develops draft recommendation(s)

Step 4: Task Force debate, then public comment period

Step 5: Final recommendation(s) published and disseminated

5

Harms

GRADE IS ASSIGNED TO EACH RECOMMENDATION

	Degree of Certainty	Net Benefit (benefit minus harm)	Suggestion for Practice
Α	High certainty	Substantial	Offer or provide service
B	Moderate to high certainty	Moderate to substantial	Offer or provide service
	Moderate certainty	Small or variable	Shared decision- making
D	Moderate to high certainty	None or net harm	Do not offer or provide
I	Low certainty	Unknown	Variable

Population	Recommendation	Grade (What's This?)
Women aged 21 to 65 years	The USPSTF recommends screening for cervical cancer every 3 years with cervical cytology alone in women aged 21 to 29 years. For women aged 30 to 65 years, the USPSTF recommends screening every 3 years with cervical cytology alone, every 5 years with high-risk human papillomavirus (hrHPV) testing alone, or every 5 years with hrHPV testing in combination with cytology (cotesting). See the Clinical Considerations section for the relative benefits and harms of alternative screening strategies for women 21 years or older.	
Women older than 65 years	The USPSTF recommends against screening for cervical cancer in women older than 65 years who have had adequate prior screening and are not otherwise at high risk for cervical cancer. See the Clinical Considerations section for discussion of adequate prior screening and risk factors that support screening after age 65 years.	D
Women younger than 21 years	The USPSTF recommends against screening for cervical cancer in women younger than 21 years.	D
Women who have had a hysterectomy	The USPSTF recommends against screening for cervical cancer in women who have had a hysterectomy with removal of the cervix and do not have a history of a high-grade precancerous lesion (ie, cervical intraepithelial neoplasia [CIN] grade 2 or 3) or cervical cancer.	D

EXAMPLE: CERVICAL CANCER SCREENING

From Affordable Care Act ("ObamaCare"):

"...a health insurance issuer ...shall provide coverage for and shall not impose any cost sharing requirements for evidence-based items or services that have a rating of A or B in the current recommendations of the USPSTF".

WEIGHING POTENTIAL BENEFITS AND HARMS

POTENTIAL BENEFITS AND HARMS OF SCREENING

Key point: we are doing something to a perfectly healthy, happy person. We have to be very certain that on average, the **potential benefits clearly outweigh the potential harms**.

Potential benefits

- Reduced disease-specific mortality
- Reduced all-cause mortality
- Reduced morbidity (treatment of early disease may have less harm than treatment of late disease)

Potential harms

- Direct harm (e.g. pain, radiation)
- Harm of downstream tests (e.g. biopsies)
- Worry (false positives \rightarrow "cancer scares")
- Cost
- Unintended behavior change (i.e. lung CA screening and smoking)
- Overdiagnosis (more on that later...)

A Benefit: Life-years gained per 1000 individuals screened

	Model Estimates, Life-Years Gained per 1000 Screened		
Screening Method and Frequency	Middle	Low	High
Flexible sigmoidoscopy every 5 y	221	181	227
FIT-DNA every 3 y	226	215	250
FIT every year ^a	244	231	260
HSgFOBT every year	247	232	261
CT colonography every 5 y ^b	248	226	265
Flexible sigmoidoscopy every 10 y plus FIT every year ^a	256	246	270
FIT-DNA every year	261	246	271
Colonoscopy every 10 y ^a	270	248	275

					1	
					_	
0	50	100	150	200	250	300
	Life-Y	'ears Gaiı	ned per 1	000 Scr	eened	

BOWEL SCREENING POTENTIAL BENEFITS:

221 TO 270 LIFE-YEARS GAINED, AND 20 TO 24 DEATHS AVERTED, PER 1000 PERSONS SCREENED.

B Benefit: Colorectal cancer deaths averted per 1000 individuals screened

Model Estimates, CRC Deaths Averted per 1000 Screened

Screening Method and Frequency	Middle	Low	High
Flexible sigmoidoscopy every 5 y	20	17	21
FIT-DNA every 3 y	20	19	22
FIT every year ^a	22	20	23
HSgFOBT every year	22	20	23
CT colonography every 5 y ^b	22	20	24
Flexible sigmoidoscopy every 10 y plus FIT every year ^a	23	22	24
FIT-DNA every year	23	22	24
Colonoscopy every 10 y ^a	24	22	24

OR

~ 2 DEATHS PER 100 SCREENED AVERTED, ADDING 11 YEARS OF LIFE PER PERSON

CRC Deaths Averted per 1000 Screened

C Harms: Complications (gastrointestinal and cardiovascular events) of colorectal cancer screening and follow-up testing per 1000 individuals screened^c

Model Estimates, Complications per 1000 Screened

Screening Method and Frequency	Middle	Low	High
Flexible sigmoidoscopy every 5 y	10	9	12
FIT-DNA every 3 y	9	9	10
FIT every year ^a	10	10	11
HSgFOBT every year	11	11	11
CT colonography every 5 y ^b	10	10	11
Flexible sigmoidoscopy every 10 y plus FIT every year ^a	11	11	12
FIT-DNA every year	12	12	13
Colonoscopy every 10 y ^a	15	14	15

Complications per 1000 Screened

D Burden: Lifetime No. of colonoscopies per 1000 individuals screened

Colonos	copies	
Middle	Low	High
1820	<mark>1493</mark>	2287
1714	1701	1827
1757	1739	1899
2253	2230	2287
1743	1654	1927
2289	2248	2490
2662	2601	2729
4049	4007	4101
	Colonos Screene Middle 1820 1714 1757 2253 1743 2289 2662	1820 1493 1714 1701 1757 1739 2253 2230 1743 1654 2289 2248 2662 2601

Colonoscopies per 1000 Screened

Bowel Screening Potential harms:

Range of 1.7 to 4.1 colonoscopies/person and 0.9 – 1.5 serious complication/100 persons screened

Most harms with colonoscopy based strategies

BALANCING BENEFITS AND HARMS: CERVICAL CANCER

"Flat of the curve" medicine: q3 rather than q5 year interval increases burden and cost with no increase in benefit

Important point: more screening is not always a net good, with diminishing returns and increasing harms as it intensifies

Source: Kim JJ, et al. Evidence Syntheses, No. 158s. Rockville, MD: <u>Agency for Healthcare Research and</u> <u>Quality (US)</u>; 2018 Aug.

HOW DO WE MEASURE BENEFIT?

- Survival from time of diagnosis, i.e.
 5 year survival?
- All-cause mortality, i.e. Deaths/100,000/year?
- Disease specific mortality, i.e. Cervical cancer deaths/100,000/year?

AN ILLUSORY BENEFIT: LONGER SURVIVAL FROM DIAGNOSIS

- Screening almost always increases survival from the time of diagnosis
- But that is due to earlier detection, and is not a benefit unless life is lengthened overall and mortality reduced Longer survival from time of diagnosis

with screening, but same length of life

15 year survival from diagnosis

Lesson: measure benefit of a screening program using mortality reduction, not increase in survival from diagnosis (i.e. 5 year survival) or shift to earlier stage

SHOULD WE INSIST THAT SCREENING PROGRAMS REDUCE ALL-CAUSE MORTALITY?

Figure 1. Sample-size inflation factors based on 90% power to detect a difference at the 0.05 level.^a

- If 10 year all-cause mortality for a population of 65 year old women is 15%, but breast cancer mortality is only 1.5%, then the ratio of all cause to disease specific mortality is 10
- From our graph, one would need about 8 times as large a study to prove lower all-cause mortality, compared to what you would need to prove lower breast cancer specific mortality
- Larger relative risk reduction with diseasespecific mortality is easier to prove

Dobbin K, Ebell M. Should we expect all-cause mortality reductions in large screening studies? Br J Gen Pract 2018

SHOULD WE INSIST THAT SCREENING PROGRAMS REDUCE <u>ALL-CAUSE</u> MORTALITY? In the al

Screening program	Mortality reduction	Fewer deaths/ 100,000 screened	Confidence interval
Breast cancer	Disease	47	(-14 to 108)
(AGE study)	All-cause	92	(-110 to 294)
Lung cancer	Disease	312	(106 to 518)
(NLST study)	All-cause	456	(18 to 896)
Ovarian cancer	Disease	50	(-9 to 109)
(UKCTOCS)	All-cause	-98	(-353 to 167)

In the absence of such gigantic studies, we should at least be sure the direction of mortality is the same for all cause and disease specific.

Ovarian CA mortality down, all-cause up (worrisome)

Source: Dobbin K, Ebell M. Should we expect all-cause mortality reductions in large screening studies? Br J Gen Pract 2018

HOW DO WE MEASURE BENEFIT?

- Survival from time of diagnosis, i.e.
 5 year survival
- All-cause mortality, i.e. deaths/100,000/year

Ideal, often not possible, should at least be in same direction

No!

Disease specific mortality, i.e.
 Cervical cancer deaths/100,000/year

Usually the best option

A NEWLY RECOGNIZED HARM: OVERDIAGNOSIS

OVERDIAGNOSIS: AN IMPORTANT SOURCE OF HARM

Study of trauma victims in Detroit, 1996, showing rates of small foci of prostate cancer by age and race:

Age	African- American	Caucasian
20-29	8%	8%
30-39	31%	31%
40-49	43%	37%
50-59	46%	44%
60-69	70%	65%
70-79	81%	83%

Source: Sakr WA, et al. Age and racial distribution of prostatic intraepithelial neoplasia. Eur Urol. 1996; 30(2):138-44.

Old thinking: precancerous lesion \rightarrow symptomatic cancer \rightarrow death

Only paths where screening is beneficial

- New thinking: several possible paths
- 1. Cancer progresses very rapidly (*melanoma, pancreatic*) or may metastasize early (*ovarian*)
- Cancer progresses more slowly, and cancers detected by screening have a more favorable outcomes than cancers detected later due to symptoms (*many breast, lung cancers*)
- 3. Cancer progresses more slowly and would be amenable to better outcomes with earlier treatment (like #2), but something else causes death (*lung cancer patient dies of other smoking complications*)
- 4. Cancer progresses very slowly, is detected by screening, but would never have caused symptoms (*overdiagnosed prostate, lung, or breast cancer*)
- 5. Precancerous lesion's removal prevents cancer (cervical, colorectal)
- 6. Precancerous or early stage lesions regress without therapy (*cervical, neuroblastoma*)

DETECTING OVERDIAGNOSIS: EFFECTIVE PROGRAM

- We begin a cancer screening program in 1990.
- We detect more cancer than before (increased incidence)
- After a few years, mortality due to that cancer begins to decline.

DETECTING OVERDIAGNOSIS: INEFFECTIVE PROGRAM

- We begin a cancer screening program in 1990.
- We detect more cancer than before (increased incidence)
- However, mortality remains unchanged

Source: Kramer BS, Croswell JM. Cancer Screening: The clash of science and intuition. Annu. Rev. Med. 2009. 60:125–37

INCIDENCE AND MORTALITY

Example 1: mix of indolent and aggressive cancer; increasing incidence

Example 2: removal of precancerous lesions leading to decreased incidence and mortality

Example 3: rampant overdiagnosis with large increase in incidence and no effect on mortality

Source: Esserman L, et al. Overdiagnosis and Overtreatment in Cancer An Opportunity for Improvement. JAMA 2013; 310(8):797-798 Table. Change in Incidence and Mortality of Cancers Over Time From 1975 to 2010 as Reported in Surveillance, Epidemiology and End Results¹

		Incidence	e	Mortality					
	Per 1	000 000	%	Per 10	000 000	%			
Change ^a	1975	1975 2010 ^b		1975	2010 ^b	Change			
Example 1									
Breast ^c	105.07	126.02	20	31.45	21.92	-30			
Prostate	94	145.12	54	30.97	21.81	-30			
Lung and bronchus ^d	52.26	56.68	8	42.56	47.42	11			
Example 2									
Colon	41.35	28.72	-31	28.09	15.51	-45			
Cervical	14.79	6.71	-55	5.55	2.26	-59			
Example 3									
Thyroid	4.85	13.83	185	0.55	0.51	-7			
Melanoma	7.89	23.57	199	2.07	2.74	32			

Overdiagnosis in Breast Cancer Screening? Data from large US cancer registry (CDC)

Top graph: widespread mammography for women in 40's began in mid 1980's

Bottom graph: Large jump in incidence of early stage cancer: from 112 to 234 cases/100,000/year (blue line)

But by now, we should have seen similar decline in late stage cancer. But, we have not: late stage only decreased from 102 to 94 cases/ 100,000/year (red line)

Source: Bleyer and Welch, N Engl J Med 2013; 367: 1998

HOW MUCH OVERDIAGNOSIS?

- Rates of overdiagnosis for different screening programs
 - Breast cancer: 20% to 30%
 - Prostate cancer: 30% to 50%
 - Lung cancer: 20%
 - Colorectal and cervical cancer: ??
- Overdiagnosis is more common:
 - In older patients, who have more competing causes of mortality, and less time for cancer to progress and cause harm
 - With shorter intervals between tests, earlier start age, later stop age (more aggressive screening)

Source: Overdiagnosis in Prostate Cancer Screening Decision Models: A Contextual Review for the U.S. Preventive Services Task Force. AHRQ Publication No. 17-05229-EF-3 April 2017

STRATEGIES TO REDUCE OVERDIAGNOSIS

- 1. Do not screen asymptomatic persons in the absence of RCT evidence of reduced mortality and acceptable harms
- Do not screen too often (i.e. annual mammogram) or too long (i.e. 80 years old)
- 3. Re-name words like carcinoma and neoplasia to something less scary:
 - Ductal carcinoma in situ or high-grade prostatic intraepithelial neoplasia or precursor pancreatic lesion → IDLE (indolent lesion of epithelial origin)
- 4. Develop better protocols and standards for evaluating incidentalomas (i.e. TI-RADS for thyroid lesions)
- 5. Develop better biomarkers and prognostic models to separate truly aggressive cancers from indolent cancers

STRATEGIES TO REDUCE OVERDIAGNOSIS

- 6. Consider active surveillance rather than immediate aggressive therapy
 - Standard of care for many prostate cancers, but variable uptake
 - Trials underway for active surveillance of DCIS, thyroid lesions

Type of Cancer	Median Age at Diagnosis (yr)	Sex of Affected Patients	Intensive Treatment Option	Risks Associated with Intensive Treatment	Active Surveillance Option	Physician in Charge	Stage of Adoption
Prostate	66	100% male	Radical prostatectomy or radiation	Impotence and incontinence	Prostate exam; prostate- specific antigen testing; biopsy	Urologist	In practice
Thyroid	51	75% female, 25% male	Total thyroidectomy, with or without lymph-node re- section and radio- active iodine	Permanent change in voice and permanent low calcium levels	Neck ultrasound and testing of serum thyroglobulin	Endocrinol- ogist	In trials
Breast (DCIS)	62	Nearly 100% female	Mastectomy or lum- pectomy with radiation	Surgical compli- cations and lymphedema	Mammography	Unclear	In dis- cussion

Source: Haymart, et al. Active Surveillance for Low-Risk Cancers — A Viable Solution to Overtreatment? Engl J Med 2017; 377:203-206

LESSONS LEARNED

- An evidence-based, transparent, public process free of conflict of interest helps create guidelines you can trust.
- Health systems should determine optimal screening strategies based on a balance of benefits, harms, and available resources
- Randomized trials measuring mortality provide the best evidence regarding the benefit of screening programs
- Overdiagnosis is an most important harm, but is poorly understand by physicians and patients
- Strategies (and more research) are needed to mitigate the harms of overdiagnosis

Inisheer, October 2018

THANK YOU! QUESTIONS?

Inisheer, October 2018

CANCER SCREENING PROGRAMMES IN IRELAND

BreastCheck: mammography every 2 years for women 50 to 64 years, increasing to 69 by 2021

CervicalCheck: Pap smear every 3 years for women age 25 to 44, every 5 years age 45 to 60 years, with reflex to HPV testing if abnormal

BowelScreen: men and women age 60 to 69 years with a fecal immunochemical test (FIT) done at home every two years

Source: <u>https://www.hse.ie/eng/services/list/5/cancer/patient/screen/screening.html</u>

ADHERENCE TO CANCER SCREENING IN US VS IRELAND

Source: 2015/2016 Annual Reports of BreastCheck, CervicalCheck and BowelScreen Programs; CDC, Patterns and Trends in Cancer Screening in the US, <u>https://www.cdc.gov/pcd/issues/2018/17_0465.htm</u>

Country	Organization (Type)	Year	Test	10-19	20-29	30-39	40-49	50-59	60-69	70-79	
United States ¹	US Preventive Services Task Force (A)	2012	Cyt								
United States ¹	US Preventive Services Task Force (A)	2012	Cyt+HPV								
United States ¹	US Preventive Services Task Force draft (A)	2017	Cyt								
United States ¹	US Preventive Services Task Force draft (A)	2017	HPV								
Switzerland ²	League Against Cancer (B)	2010	Cyt			[
Norway ³	Cancer Registry of Norway (B)	2010	Cyt								
Norway ³	Cancer Registry of Norway (B)	2010	HPV								
Netherlands ⁴	NIPHE (A)	2015	Cvt							777	
Germany ⁵	Federal Joint Committee (A)	2015	Cyt								
Sweden ⁶	National Board of Health and Welfare (A)	2014	Cyt							T	
Sweden ⁶	National Board of Health and Welfare (A)	2014	HPV							[
Ireland ⁷	National Screening Service (A)	2009	Cyt	17							Ireland
Austria ⁸	Austrian Cancer Aid Society (B)	NR	Cyt								I orarra
Denmark ⁹	National Board of Health (A)	2014	Cyt							ľ	
Denmark ⁹	National Board of Health (A)	2014	HPV								
Belgium ¹⁰	Foundation Against Cancer (B)	2017	Cyt			1					
Canada	CTFPHC (A)	2013	Cyt							1	
Australia ¹¹	Australian Government Department of Health (A)	2017	Cyt								
Australia ¹¹	Australian Government Department of Health (A)	2017	HPV								
France ¹²	National Cancer Institute (A)	2017	Cyt								CERVICAL
Japan ¹³	National Cancer Center (A)	2010	Cyt							Ì	
Japan ¹³	National Cancer Center (A)	2010	HPV								SCREENING
Japan ¹³	National Cancer Center (A)	2010	Cyt+HPV								
Japan ¹³	National Cancer Center (A)	2010	HPV with cvt triage								PROGRAMMES
Iceland ¹⁴	Icelandic Cancer Society (B)	NR	Cvt								
UK ¹⁵	UKK National Screening Committee (A)	2016	HPV								
Finland ¹⁶	Cancer Society of Finland (B)	2010	Cyt or HPV								
New Zealand ¹⁷	Ministry of Health (B)	2014	Cyt								
Italy ¹⁸	National Screening Observatory (A)	2015	Cyt		-						
Spain ¹⁹	Cancer Strategy of National Health System (A)	2009	Cyt	1							Source: Ebell, et al. Public Heal
				-							Rev. 2018 Mar 2;39:7. doi:
Recommend:	Recommend selectively:	1	Do not recomme	end		Insuf	ficient evi	idence:			10.1186/s40985-018-0080-0.
Every 7 years:	Every 5 years:		Every 3 yea	ars:							10.1100/3+0000-010-0000-0.
Every 2 years	Every year		o interval energifi	ind .	*********						

Every 3 years: Every year: No interval specified:

Every 2 years:

<u>Health</u> 0.

COMPARISON WITH OTHER DEVELOPED ECONOMIES: BOWEL

Country	Organization (Type)	Year*	Type of Test	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75+	
United States	USPSTF (A)	2016	FIT ^a									
United States	USPSTF (A)	2016	Colonoscopy ^a									- 05
United States	American Cancer Society (B)	2017	Colonoscopy ^a									
United States	ACG (C)	2017	Colonoscopy									
Luxembourg	Ministry of Health (A)	2016	FIT									
Switzerland	League Against Cancer (B)	2013	FIT or gFOBT ^b									
Norway	Cancer Registry of Norway (B)	2012	FIT°									
Netherlands	NIPHE (A)	2014	FIT									
Germany	Federal Joint Committee (A)	2017	FIT ^d									
Sweden	NBHW (A)	2014	gFOBT									
Ireland	National Screening Service (A)	2012	FIT	1								Ireland
Austria	Austrian Cancer Care (B)	N/A	FIT [®]									
Denmark	National Board of Health (A)	2014	FIT									
Belgium	Foundation Against Cancer (B)	2016	FIT									
Canada	CTFPHC (A)	2016	FIT or gFOBT									
Australia	AGDH (A)	2016	FIT or gFOBT									
France	Institut National Du Cancer (A)	2015	FIT	1								
Japan	National Cancer Center (A)	2016	FIT									
Iceland	Icelandic Cancer Society (B)	2015	FIT	1							-	
United Kingdom	UK National Screening Committee (A)	2016	FIT	l.							1	
Finland	Cancer Society of Finland (B)	2010	gFOBT	Ĩ.							Sour	ce: Ebell, et al. Public
New Zealand	Ministry of Health (A)	2017	FIT									th Rev. 2018 Mar
Italy	National Screening Observatory (A)	2015	EIT ⁹							-		7. doi: 10.1186/
Spain	CSNHS (A)	2009	FIT	12							⊥ s409	85-018-0080-0.